§V) VIP | Enterprise WordPress

Enterprise WordPress Developer
Certification Exam Guide

An Enterprise WordPress Developer is a highly skilled developer with deep knowledge of
WordPress at scale. This individual can design, develop, secure, optimize, and maintain
enterprise-grade WordPress implementations. They understand the unique challenges of
high-traffic, large-data, and mission-critical environments. They can collaborate effectively
across technical and business teams, implementing solutions that are performant, secure,
scalable, and maintainable.

This credential focuses on hands-on, technical implementation and best practices for
enterprise-level WordPress projects, validated through scenario-based, practical, and
multiple-choice questions.

Section 1: WordPress Core (~15% of the exam)

1.1 Hooks (Actions and Filters)
Knows when and how to use hooks to extend or modify WordPress behavior.

Differentiate between actions (for side effects) and filters (for data transformation).
Identify and use important core hooks.

Write efficient custom hooks and avoid performance pitfalls.

Debug hook priorities and conflicts.

1.2 Core REST API Usage and Customization
Knows how to consume, authenticate, and extend the WordPress REST API safely.

Use core endpoints for CRUD operations.

Apply authentication methods (cookies, OAuth, application passwords).
Add validation and sanitization for requests.

Extend core endpoints with custom fields or routes.

1.3 Options API
Knows how to store and retrieve site-wide settings efficiently.

e Get, set and delete options correctly.
e Differentiate between autoloaded and non-autoloaded options.



e Optimize performance when working with large option sets.

1.4 Transients API
Knows how to cache data temporarily to improve performance.

Create, retrieve, and delete transients.

Use transients for expensive operations (e.g., API calls, queries).
Understand site-wide vs multisite transient storage.

Handle transient expiration and cache invalidation.

1.5 Cron / Event API
Knows how to schedule and manage tasks in WordPress at scale.

Register custom cron events.

Distinguish between WP-Cron and system cron jobs.
Handle missed or duplicate events.

Optimize cron performance in high-traffic environments.

1.6 Settings API
Knows how to build secure and extensible admin settings pages.

Register settings, sections, and fields.

Validate and sanitize settings input.

Integrate with block-based settings pages.

Organize admin UX with tabs, custom pages, or options groups.

1.7 Template Hierarchy
Knows how WordPress resolves templates in both classic and block themes.

Navigate classic PHP-based template hierarchy.
Use theme. json in block themes.

Override core templates safely.

Debug template selection.

1.8 Permalinks and Rewrite Rules
Knows how permalinks are generated and managed in WordPress.

e Register custom rewrite rules for CPTs/taxonomies.
e Flush rewrite rules correctly and avoid unnecessary flushes.


https://learn.wpvip.com/certification/

e Troubleshoot common permalink issues.
e Handle multilingual or complex permalink structures.

1.9 Multisite
Knows when and how to implement WordPress Multisite effectively.

Understand multisite architecture and shared database structure.
Evaluate when to use multisite vs multiple installs.

Manage site creation, roles, and permissions.

Recognize limitations (plugins/themes, domain mapping).

1.10 Roles and Capabilities
Knows how to configure user access with maximum security in mind.

Create custom roles and capabilities programmatically.
Restrict access via capabilities instead of roles where possible.
Avoid storing critical security logic in the database.

Use least-privilege principles when designing roles.

1.11 WP_Query
Knows how to construct efficient and secure database queries with WP_Query.

Build custom queries with arguments (meta, taxonomy, date).
Handle pagination correctly.

Distinguish between WP_Query, query_posts, and get_posts.
Optimize queries with indexes and caching.

1.12 Taxonomies
Knows how to leverage core and custom taxonomies for content organization.

Use categories and tags effectively.

Register custom taxonomies with labels and rewrite rules.
Query taxonomy terms in performant ways.

Handle pitfalls of large or deeply nested taxonomies.

1.13 Post Meta
Knows how to store, retrieve, and query metadata efficiently.

e Useget_post_metaandupdate_post_meta.


https://learn.wpvip.com/certification/

Handle serialized data safely.

Optimize queries on large meta datasets.

Use meta queries in WP_Query appropriately.

Recognize risks of frequent meta updates (performance, locking).

1.14 Block Editor Basic Architecture
Knows how the Gutenberg editor and block system are structured.

Register blocks with registerBlockType.

Use block. json for block metadata.

Define block attributes and implement save/render functions.
Connect JavaScript (editor) with PHP (server-side).

1.15 Custom Post Types (CPTs)
Knows when and how to implement CPTs effectively.

Register CPTs with register_post_type.
Integrate CPTs with custom taxonomies.
Define rewrite rules and capabilities for CPTs.
Understand appropriate use cases.

1.16 Media Library
Knows how the media library architecture works and how to extend the media library

Understands the data model (attachment posts and post meta)

Intermediate image sizes

Knows the architectural difference between list (PHP) and Grid (Backbone.js) views.
Can extend via APls/hooks

1.17 Interactivity API
Understands what the interactivity API is and what it can be used for

Enable reactive, stateful behavior in blocks.

Build simple client-side interactions without extra frameworks.
Combine server-rendered data with front-end interactivity.
Follow accessibility and performance best practices.

Section 2: Custom Development (~15% of the exam)

2.1 Block Editor
Knows how to develop with the block editor, block themes, and custom blocks.


https://learn.wpvip.com/certification/

Write a block theme using theme . json and block templates.
Build custom blocks with registerBlockType.

Create block variations and reusable block patterns.
Distinguish between static and dynamic blocks.

Ensure backward compatibility with the classic editor.

2.2 Internationalization (i18n)
Knows how to make WordPress projects translation-ready and multilingual-friendly.

e Use WordPress translation functions.

Prepare strings and escape output properly for translation.
Load text domains for plugins/themes.

Work with . po and .mo files.

Understand the role and limitations of multilingual plugins.

2.3 Dependencies in WordPress Code
Knows how to manage dependencies and load assets correctly.

Enqueue scripts and styles with wp_enqueue_script and wp_enqueue_style.
Handle dependencies, versioning, and load order.

Register and deregister assets responsibly.

Use action and filter hooks appropriately when loading assets.

Understand strategies for plugin dependency management.

2.4 WordPress Standards
Knows and applies official WordPress coding standards.

e Follow coding standards for PHP, JavaScript, CSS, and accessibility.
e Use PHPCS and other tooling to enforce consistency.
e Write maintainable, readable, and community-compliant code.

2.5 Code Organization
Knows how to structure WordPress code and templates for clarity and maintainability.

Organize custom plugin functionality into logical file structures.
Use consistent naming conventions for templates.

Separate concerns (logic vs presentation vs configuration).
Apply WordPress philosophies like “decisions, not options.”


https://learn.wpvip.com/certification/

2.6 Activation and Deactivation
Knows how to manage plugin lifecycle events safely.

Register options, roles, or custom tables on activation.

Clean up options, roles, or custom data on deactivation/uninstall.
Flush rewrite rules when appropriate.

Ensure reversibility and safe failure states.

2.7 Correct Hook Use for Loading Plugin Code
Knows how to load plugin logic only in the proper context.

Use hooks to defer execution until WordPress is ready.

Avoid running license checks, API calls, or heavy logic on every request.
Prevent execution during unintended contexts (REST API calls, WP-CLI).
Scope code correctly to admin, frontend, or login contexts.

2.8 Running Code in the Correct Context
Knows how to differentiate execution contexts and scope code accordingly.

Detect WP-CLI context.

Run WP-CLI commands only during CLI execution.

Prevent CLI logic from running during HTTP requests (frontend or admin).
Separate context-specific logic into isolated functions or files.

2.9 PHP Sessions and Caching Issues
Knows why PHP sessions are discouraged in WordPress and their impact on caching.

e Recognize how PHP sessions break page/object caching.
e Avoid session use in plugins/themes.

e Use alternatives like cookies, transients, or the options API.

e Design solutions that scale with enterprise caching layers (CDN, Varnish).

Section 3: Security (~15% of the exam)

3.1 Identifying and Preventing Injection Vulnerabilities
Knows how to avoid SQL, XSS, and command injection in WordPress code.

e Apply sanitization and escaping functions correctly.
e Recognize common injection vectors (e.g., unsanitized meta queries, direct DB queries).


https://learn.wpvip.com/certification/

e Distinguish between injection types and their attack surfaces.

3.2 Secure Handling of User Input and Output
Knows how to validate, sanitize, and escape user data in all contexts.

e Use WordPress APIs like sanitize_text_field() andesc_html().
e Apply output escaping for different contexts (HTML, JS, URLs).
e Identify unsafe patterns in form handling and submissions.

3.3 WordPress Functions for Sanitization, Validation, and Escaping
Knows which core functions to use in different contexts.

e Select the correct escaping function (esc_url() vs esc_html()).
e Enforce validation rules in admin and public forms.
e Apply context-aware sanitization consistently.

3.4 WordPress-Specific Injection Vectors
Knows common places where WordPress code can be exploited.

e Secure poorly structured WP_Query or meta_query arguments.
e Validate and sanitize search inputs.
e Audit plugin code for unsafe query patterns.

3.5 Access Control Best Practices
Knows how to enforce permissions in a secure, least-privilege way.

e Usecurrent_user_can() for authorization checks.
e Restrict access by role and capability.
e Apply least-privilege design to custom code.

3.6 Roles and Capabilities System for Least Privilege
Knows how to use roles and capabilities to enforce access securely.

e Create and modify roles programmatically.
e Secure CPTs and REST endpoints with map_meta_cap().
e Avoid granting unnecessary admin-level access.


https://learn.wpvip.com/certification/

3.7 Securing AJAX and REST API Endpoints
Knows how to protect custom endpoints against abuse.

e Usecheck_ajax_referer() for nonce validation.
e Enforce capability checks in callbacks.
e Usepermission_callback for REST routes.

3.8 Nonce Usage and CSRF Protection
Knows how to prevent CSRF attacks with WordPress nonces.

e Generate nonces with wp_nonce_field() orwp_create_nonce().
e Verify with check_admin_referer() orwp_verify_nonce().
e Apply CSRF protection to both admin forms and front-end AJAX.

3.9 Secure WordPress Configuration Practices
Knows how to harden core configuration and file system settings.

e Lock down wp-config.php with server rules.
e Configure salts, keys, and file permissions.
e Disable file editing in wp-admin.

3.10 Limiting Attack Surfaces (File Editing, XML-RPC, etc.)
Knows how to reduce unnecessary exposure in WordPress.

e Disable plugin/theme editors.
e Block or restrict XML-RPC if not needed.
e Harden unused features and APIs.

3.11 Keeping Core, Plugins, and Themes Updated
Knows why updates are critical for security and how to manage them.

e Define update policies for production environments.
e Use WP-CLI or management tools for updates at scale.
e Monitor vulnerabilities in outdated components.

3.12 Nature of Server-Side Request Forgery (SSRF)
Knows what SSRF is and how it can affect WordPress.

e Understand how attackers exploit internal services.


https://learn.wpvip.com/certification/

e Identify SSRF risks in imports, image previews, and plugins.
e Recognize patterns of SSRF exploitation.

3.13 SSRF Exploits via Misconfigured Code or Plugins
Knows how insecure remote requests can lead to SSRF.

e Avoid unsafe use of wp_remote_get() or file_get_contents().
e Prevent requests to internal IP ranges.
e Restrict outbound requests to approved domains.

3.14 Mitigating SSRF Risks
Knows how to defend WordPress environments against SSRF.

e Filter and validate remote request URLs.
e Implement hosting/firewall protections.
e Block loopback requests where not required.

3.15 Types of DoS and DDoS Attacks
Knows common denial-of-service techniques and their impact.

e Identify volumetric and application-layer DoS.
e Understand brute force and wp-cron exploitation.
e Recognize resource exhaustion tactics.

3.16 Limiting Resource Exhaustion
Knows how to prevent overuse of server resources.

e Apply rate limiting and throttling.
e Use CAPTCHA or login attempt limits.
e Implement CDN-based or host-level mitigation.

3.17 Spotting Abuse and Brute Force Attacks
Knows how to detect signs of automated attack activity.

e Analyze logs for repeated failed logins.
e Use security plugins for brute force detection.
e Monitor unusual traffic spikes or patterns.


https://learn.wpvip.com/certification/

3.18 Logging and Audit Trails in WordPress
Knows what to log and why for forensic security.

e Track logins, role changes, and admin actions.
e Store logs securely for analysis.
e Use logging frameworks or monitoring plugins.

3.19 Implementing Logging for Authentication, Changes, and Errors
Knows how to capture critical system and user events.

e Log failed/successful logins.
e Track plugin/theme updates and code changes.
e Capture PHP and WordPress errors systematically.

3.20 Monitoring and Responding to Suspicious Activity
Knows how to detect and react to potential compromises.

e Set up log monitoring and alerting.
e Use intrusion detection tools.
e Respond to breaches with incident handling steps.

3.21 WordPress Coding Standards for Secure Development
Knows how coding standards enforce better security practices.

e Follow WordPress Coding Standards (WPCS).
e Use PHPCS for linting and enforcement.
e Structure code to minimize security risks.

3.22 Role of Static Analysis Tools
Knows how to integrate automated security checks into workflows.

e Use static analysis to detect unsafe code patterns.
e Integrate tools like PHPStan.
e Review and address flagged issues proactively.

3.23 Incorporating Security Checks into Cl Pipelines
Knows how to automate security in continuous integration workflows.

e Set up automated vulnerability scans.
e Enforce code quality/security gates.


https://learn.wpvip.com/certification/

e Use WPScan, PHPStan, or equivalent tools in CI/CD.

Section 4: Performance (~20% of the exam)

4.1 Performance Throughout the Request Cycle
Knows how performance is affected from DNS resolution to browser rendering.

e Understand the WordPress execution lifecycle.
e Identify bottlenecks at each stage (server, PHP, DB, front-end).
e Optimize both server-side and client-side performance.

4.2 Full Page Caching Strategies in WordPress
Knows when and how to use page caching for scale.

e Compare plugin-level, server-level, and CDN caching.
e Handle cache invalidation correctly.
e Measure and validate cache effectiveness.

4.3 Unbounded Queries
Knows why unbounded MySQL queries degrade performance.

e Recognize queries without limits or constraints.
e Apply pagination or batching strategies.
e Optimize query patterns for scale.

4.4 Using NOT IN
Knows how NOT IN impacts MySQL query performance.

e Identify performance penalties of NOT IN queries.
e Apply alternative query strategies where possible.

4.5 Indexing
Knows how to use indexes to speed up queries.

e Spot missing indexes after imports/migrations.
e Understand when to use primary, composite, or unique indexes.
e Diagnose index usage with query analysis tools.


https://learn.wpvip.com/certification/

4.6 Using LIKE
Knows why LIKE queries are slow and how to avoid them.

e Recognize inefficiencies in post meta queries.
e Use exact key/value matches instead of wildcards.
e Apply indexing to improve pattern matching.

4.7 Using EXPLAIN
Knows how to analyze queries with EXPLAIN to find bottlenecks.

e Interpret EXPLAIN output (filesort, full table scans, index usage).
e Diagnose unintended index usage.
e Adjust queries or indexes based on EXPLAIN results.

4.8 Post Meta Performance
Knows performance challenges of bloated post meta usage.

e Avoid storing large or inappropriate data in post meta.
e Optimize queries with meta joins.
e Consider alternative storage (custom tables).

4.9 Auto-Loaded Options
Knows how autoloaded options affect page load.

e Identify unnecessary autoloaded options.
e Limit the size and number of autoloaded values.
e Optimize options usage during site initialization.

4.10 Uncached Functions
Knows which WordPress functions can be expensive without caching.

e Identify functions that repeatedly query the database.
e Cache results where appropriate.
e Replace uncached calls with more efficient patterns.

4.11 Sitemap and Archive Performance
Knows how deep crawling affects performance.

e Understand sitemap and archive query limits.
e Apply pagination or query restrictions.


https://learn.wpvip.com/certification/

e Optimize for SEO crawlers without overloading the DB.

4.12 External HTTP Requests
Knows performance implications of server-side external requests.

e Identify blocking requests during page generation.
e Cache responses from external APls.
e Offload or defer requests where possible.

4.13 Query Offloading (e.g., Elasticsearch)
Knows when to offload queries to external search systems.

e Identify queries too complex for MySQL (full-text, faceted).
e Understand when MySQL is sufficient.
e Integrate Elasticsearch or similar tools for scalability.

4.14 Persistent Object Cache
Knows the role of persistent object caching for performance.

e Differentiate between persistent and non-persistent caching.
e Implement Redis or Memcached via drop-ins.
e Understand cache invalidation with object cache.

4.15 Transients
Knows how transients behave with and without object caching.

e Store temporary data with expiration.
e Understand limitations when persistent cache is not enabled.
e Use transients appropriately for non-critical caching.

4.16 Shutdown Hook
Knows how to use the shutdown hook for post-response tasks.

e Execute actions after response delivery.
e Deferlogging, cleanup, or async tasks.
e Avoid performance impact on page loads.

4.17 Profiling Page Generation and Hook Execution
Knows how to benchmark WordPress execution and identify bottlenecks.


https://learn.wpvip.com/certification/

e Use Query Monitor and custom timing code.
e Profile actions, filters, and template loading.
e Trace slow plugin/theme operations.

4.18 Deferring or Caching Remote API Calls
Knows strategies to reduce latency from external APIs.

e Cache responses with transients or object cache.
e Prefetch or schedule calls instead of real-time requests.

e Avoid blocking user-facing requests.

4.19 Caching Expensive Backend Operations at the Right Layer
Knows how to choose the right caching strategy for heavy operations.

e Cache complex queries, calculations, or API results.
e Apply caching at object, transient, or page level as needed.
e Handle cache invalidation safely and efficiently.

[TODO - Front End Performance Subject areas to follow here, sections 4.20 - 4.30]

Section 5: Change Management (~10% of the exam)

5.1 Difference Between Unit, Integration, and Acceptance Testing
Knows the purpose and role of each testing type in the development lifecycle.

e Define unit, integration, and acceptance testing.
e Identify when to use each type.
e Explain how testing contributes to stability and reliability.

5.2 Writing and Running Unit Tests with PHPUnit
Knows how to create and execute unit tests for WordPress code.

Set up PHPUnit in a WordPress environment.
Write test cases for functions and classes.
Mock dependencies effectively.

Run tests locally and in CI pipelines.


https://learn.wpvip.com/certification/

5.3 Performing Integration Testing
Knows how to test plugin and theme interactions in a real environment.

Create integration tests spanning multiple components.
Include database, hooks, and plugin interactions.
Isolate integration concerns.

Validate real-world code behavior.

5.4 Structuring and Conducting User Acceptance Testing (UAT)
Knows how to validate features against user workflows.

Design UAT scenarios around business logic.
Capture user behavior in scripts.

Document acceptance criteria clearly.
Ensure end-user requirements are met.

5.5 Automating Tests in CI/CD Pipelines
Knows how to integrate testing into continuous delivery workflows.

Configure pipelines to run tests on push/pull requests.
Ensure tests run in isolated environments.

Automate both unit and integration testing.

Enforce test coverage requirements.

5.6 Safe Deployment Practices
Knows principles of secure and reliable WordPress deployments.

Use atomic or zero-downtime deploys.

Separate configuration from code.

Ensure deployments are repeatable and reversible.
Minimize downtime during updates.

5.7 Deploying Updates with Version Control and CI/CD
Knows how to use Git workflows with automated deployments.

Integrate Git with deployment tools.

Trigger builds on branches/tags.

Manage secrets and environment variables securely.
Automate WordPress updates with CI/CD pipelines.


https://learn.wpvip.com/certification/

5.8 Configuring CI/CD Systems for WordPress Deployment
Knows how to set up GitHub Actions, GitLab CI, or similar tools.

Create workflows for automated deploys.
Write build and deployment scripts.
Secure workflows with proper credentials.
Control access to environments.

5.9 Environment-Specific Configuration
Knows how to separate logic between production, staging, and development.

Use environment variables

Prevent cross-environment misconfigurations.
Configure environment-aware plugins/themes.
Store sensitive data securely.

5.10 Importance of Pre-Deployment Staging Environments
Knows how staging protects production during changes.

Replicate production conditions in staging.
Test deployments and migrations safely.
Validate changes before going live.
Integrate staging with CI/CD pipelines.

5.11 Git Branching Strategies
Knows how to structure collaborative workflows with Git.

Apply Git Flow, trunk-based, or feature branching.
Choose strategies based on team/project needs.
Maintain release and hotfix branches.

Avoid long-lived divergent branches.

5.12 Managing WordPress Projects in Git
Knows how to structure repositories for collaborative development.

Organize repos for plugins, themes, or monorepos.
Use submodules or subtrees when needed.
Support multi-team workflows.

Standardize repo structure for maintainability.


https://learn.wpvip.com/certification/

5.13 Managing and Reviewing Pull Requests
Knows how to ensure quality and clarity during code reviews.

Conduct peer reviews effectively.

Enforce coding standards with Cl checks.
Provide clear documentation in PRs.
Communicate feedback constructively.

5.14 Resolving Merge Conflicts and Maintaining History
Knows how to handle conflicts while keeping a clean Git history.

Resolve merge conflicts safely.

Understand rebase vs. merge workflows.
Maintain readable, consistent commit logs.
Support rollback and auditability.

5.15 Rolling Back Failed Deployments
Knows how to revert safely when deployments go wrong.

Use Git-based rollbacks.

Roll back plugins/themes with WP-CLI or tooling.
Maintain deployment version history.

Minimize downtime during rollback.

5.16 Versioning Plugins/Themes and Managing Changelogs
Knows how to communicate and track updates effectively.

Apply semantic versioning consistently.

Write clear changelogs for users and clients.
Manage version updates in Git and deployments.
Ensure compatibility with WordPress releases.

5.17 Backup and Restore as Part of Deployment
Knows how to safeguard and recover WordPress environments.

Set up automated file and database backups.

Test restores in staging environments.

Restore partial or full backups with minimal downtime.
Integrate backup routines into deployment workflows.


https://learn.wpvip.com/certification/

5.18 Deployment Logs and Monitoring Tools
Knows how to track and diagnose deployments.

Read and interpret deployment logs.

Identify and fix failed processes.

Monitor application behavior post-deploy.
Detect regressions early through monitoring.

Section 6: Debugging (~10% of the exam)

6.1 Debug Bar
Knows how to inspect queries, hooks, and request info in the admin toolbar.

e View database queries and execution time.
e Inspect hooks firing on a page load.
e Review request/response details in admin.

6.2 Query Monitor
Knows how to identify slow queries, HTTP calls, and enqueued assets.

e Trace database query performance.
e Debug HTTP requests and responses.
e Inspect conditionals, hooks, and loaded assets.

6.3 PHP Error Logs
Knows how to read and interpret PHP errors, warnings, and notices.

e Access PHP error logs in different environments.
e Configure error reporting for development vs production.
e Distinguish fatal errors from notices.

6.4 Xdebug
Knows how to step through WordPress code with Xdebug.

e Set breakpoints and step into functions.
e Trace function calls and execution order.
e Profile performance and memory usage.


https://learn.wpvip.com/certification/

6.5 APM Tools (New Relic, Datadog)
Knows how to monitor performance with application monitoring tools.

e Identify slow transactions and bottlenecks.
e Trace backend performance metrics.
e Monitor WordPress processes in real-time.

6.6 Safe Debugging in Non-Production Environments
Knows how to replicate production issues safely in staging or dev.

e Configure staging to match production.
e Reproduce errors without impacting live users.
e Debug configurations before deployment.

6.7 Browser Developer Tools
Knows how to debug front-end performance and JavaScript issues.

e Inspect DOM changes and styling.
e Analyze network requests and load times.
e Debug JavaScript errors in console.

6.8 Request and Response Headers
Knows how to debug caching, redirects, and authentication via headers.

e Inspect authentication headers.
e Diagnose caching behavior (e.g., cache hits/misses).
e Trace redirect loops via headers.

6.9 cURL
Knows how to test endpoints and APIs from the command line.

e Send GET/POST requests to WordPress endpoints.
e Simulate headers, cookies, and authentication.
e Inspect raw responses for debugging.

6.10 Graphical HTTP Clients (Postman, Insomnia)
Knows how to test REST API endpoints with GUI tools.

e Send custom REST or AJAX requests.
e Modify headers, tokens, and payloads.


https://learn.wpvip.com/certification/

e Save request collections for reuse.

6.11 Host File Entries
Knows how to route local domains to staging or dev servers.

e Edit hosts file to map domains to IPs.
e Test staging environments with live domains.
e Debug DNS-related issues locally.

6.12 Debugging with Actions and Filters
Knows how to use hooks for inspection and overriding logic.

e Add debug callbacks to actions and filters.
e Capture data passing through hooks.
e Temporarily override default behavior.

6.13 Terminal-Based Tools
Knows how to analyze server performance using CLI utilities.

e Familiarity with common terminal commands used directly on a webserver

6.14 WP-CLI for Debugging
Knows how to inspect and query WordPress data with WP-CLI.

e Familiarity of common WP_CLI commands e.g. wp option get,wp db query,wp
cron event list.
Debug scheduled tasks and runtime state.
Interact with database directly.

6.15 WordPress Shell
Knows how to debug interactively with wp shell or WP Console.

e Evaluate PHP expressions in real time.
e Inspect variables and objects.
e Test function output without modifying code.

6.16 Custom Debug Code
Knows how to log or dump values for troubleshooting.


https://learn.wpvip.com/certification/

e Useerror_log()andvar_dump().
e Add conditional debug statements.
e Remove temporary code after debugging.

6.17 Custom Response Headers
Knows how to send headers for debugging workflows.

e Add debug headers to WordPress responses.
e Inspect headers in browser tools.
e Use headers for API testing.

6.18 Custom WP-CLI Commands for Debugging
Knows how to build WP-CLI commands to expose site internals.

e Write custom CLI commands.
e Query runtime state programmatically.
e Output structured debug information.

6.19 Custom Logs
Knows how to maintain application-specific debug logs.

e Write to custom log files.
e Organize debug output by feature.
e Rotate and manage log size.

6.20 Extending Query Monitor
Knows how to add custom panels for debugging themes/plugins.

e Create Query Monitor extensions.
e Display plugin-specific runtime info.
e Provide targeted debug views.

6.21 Local Development Environment Debugging
Knows how to set up and debug in a local WordPress environment.

e Use Docker, wp-env, or custom stacks.
e Sync data and configs with production.
e Profile local performance.


https://learn.wpvip.com/certification/

6.22 Static Analysis Tools
Knows how to catch errors before runtime using static analysis.

e Use PHPStan, Psalm, and PHPCS.
e Detect unsafe code and deprecated functions.
e Integrate static analysis into Cl.

6.23 Database GUI Tools
Knows how to safely inspect and edit WordPress data via GUIs.

e Browse and query WordPress tables.
e Safely update and export data.
e Visualize table structures.

6.24 Remote Database Debugging with SSH Tunnels
Knows how to securely connect to remote DBs for troubleshooting.

e Configure SSH tunnels for DB access.
e Query staging/production databases.
e Protect credentials during connections.

6.25 Site Health and Site Info
Knows how to use built-in diagnostics in WordPress admin.

e Review Site Health status and recommendations.
e Inspect environment details via Site Info.
e Identify misconfigurations or missing modules.

6.26 IDE Customization for Debugging
Knows how to configure IDEs for WordPress debugging.

e Integrate Xdebug in IDEs.
e Set breakpoints and debug sessions.
e Install WordPress-specific extensions.

6.27 Local WordPress Installations
Knows how to manage and troubleshoot local installs.

e Debug with wp-env, Local, or Docker.
e Handle configuration mismatches.


https://learn.wpvip.com/certification/

e Test plugins/themes in isolation.

6.28 Debugging Object Cache Issues
Knows how to diagnose cache inconsistencies and stale data.

e Inspect cache groups and keys.
e Debug persistent cache backends.
e Resolve cache invalidation issues.

6.29 Debugging Redirect Loops
Knows how to diagnose and resolve redirect bugs.

e Trace redirect logic with headers.
e Inspectwp_redirect() usage.
e Identify plugin or server-level loops.

6.30 Database Connection Issues
Knows how to troubleshoot failed DB connections.

e Verify credentials in wp-config.php.
e Check DB server availability.
e Debug socket and timeout errors.

6.31 Optimizing Slow Database Queries
Knows how to analyze and fix inefficient queries.

e Use EXPLAIN to interpret execution plans.
e Apply indexing strategies.
e Identify slow queries with Query Monitor.

6.32 Database Indexing and Table Types
Knows how schema design affects performance.

e Understand primary/secondary indexes.
e Interpret autoincrement behavior.
e Compare MylISAM vs InnoDB tradeoffs.


https://learn.wpvip.com/certification/

6.33 Counting and Classifying Tables
Knows how to analyze table counts and types in WordPress.

e List database tables by type.
e Count custom vs core tables.
e Identify unused or orphaned tables.

6.34 Assessing Table Size and Growth
Knows how table size impacts performance and backups.

e Measure table sizes and growth trends.
e Diagnose oversized log/meta tables.
e Plan cleanup or archiving strategies.

6.35 Options Table Performance Issues
Knows how to debug bloated or autoloaded options.

e Identify large autoloaded values.
e Audit the options table for performance risks.
e Optimize autoload usage.

6.36 Debugging in Production Safely
Knows how to debug live systems with minimal risk.

e Use read-only or limited logging techniques.
e Minimize overhead during production debugging.
e Roll back temporary debug changes quickly.

6.37 Intermittent/Difficult-to-Reproduce Bugs
Knows how to capture and reproduce rare issues.

e Use logging to capture intermittent behavior.
e Apply traffic/session recording.
e Analyze patterns across requests.

6.38 Bypassing or Disabling Code/Plugins
Knows how to isolate issues by disabling components.

e Temporarily bypass plugin code.
e Disable hooks or themes selectively.


https://learn.wpvip.com/certification/

e Confirm sources of conflicts.

6.39 Capturing and Replaying HTTP Requests
Knows how to reproduce API/AJAX bugs with captured requests.

e Capture request payloads and headers.
e Replay with cURL and other tools.
e Compare expected vs actual responses.

6.40 Out-of-Memory Errors
Knows how to diagnose and fix PHP memory exhaustion.

e Increase memory limits.
e Profile memory usage.
e Identify memory-heavy plugins or queries.

6.41 Debugging REST API Requests
Knows how to inspect and debug API calls in WordPress.

e Inspect permissions and authentication.
e Check response codes and payloads.
e Trace custom REST routes.

6.42 PHP Stack Traces
Knows how to read stack traces to identify root causes.

e Interpret call order in trace logs.
e Map traces to source code.
e Identify misbehaving functions.

6.43 Debugging WordPress Core Code
Knows how to step through and inspect core files.

e Trace execution paths in core.
e Add temporary debug hooks to core (safely).
e Contribute patches for reproducible bugs.

6.44 Debugging Server-Side HTTP Requests
Knows how to debug WordPress remote requests.


https://learn.wpvip.com/certification/

e Inspect calls fromwp_remote_get/wp_remote_post.
e Diagnose failures or latency.
e Apply caching to reduce impact.

6.45 Cookie Issues
Knows how to debug authentication/session cookie problems.

e Inspect cookies in browser tools.
e Debug cookie expiration and persistence.
e Resolve conflicts across plugins or domains.

6.46 Client-Side JavaScript Debugging
Knows how to debug JS issues in WordPress themes/plugins.

e Use browser console and breakpoints.
e Debug script dependencies and load order.
e Trace front-end rendering bugs.

6.47 Debugging Headless/Decoupled WordPress
Knows how to debug API-driven and headless architectures.

e Trace data flow between WordPress and frontend frameworks.
e Debug CORS and authentication issues.
e Inspect API payloads powering headless frontends.

Section 7: Scalability & Architecture (~10% of the exam)

7.1 Building Performant Pages with Large Datasets
Knows how to design WordPress features that handle large volumes of posts, users, or meta data
efficiently.

e Optimize loops and queries for large datasets.
e Apply efficient code design to reduce memory and CPU load.
e Recognize backend limits and plan around them.

7.2 Optimizing Queries, Pagination, and Indexing
Knows how to make content rendering scalable through query and DB optimizations.


https://learn.wpvip.com/certification/

Use pagination to limit results.

Restrict fields returned in queries.
Avoid unbounded loops.

Apply proper indexes or custom tables.

7.3 Multi-Level Caching Strategies
Knows how to apply caching at object, fragment, and full-page levels.

Use persistent object caches.

Cache expensive template fragments.

Implement full-page caching with plugins or CDNs.
Balance caching layers to reduce server load.

7.4 Vertical vs. Horizontal Scaling
Knows the trade-offs between scaling up and scaling out WordPress infrastructure.

e Differentiate CPU/RAM upgrades (vertical) vs multi-server scaling (horizontal).
e Recognize when vertical scaling is cost-effective.
e Plan for horizontal scaling at higher traffic levels.

7.5 Designing High-Traffic Architectures
Knows how to architect WordPress for scale with modern infrastructure.

Use load balancers to distribute traffic.

Deploy WordPress in containers (Docker, Kubernetes).
Design stateless application layers.

Handle shared assets and sessions.

7.6 CDN Integration
Knows how to configure CDNs to offload traffic and improve global performance.

Integrate CDNs like Cloudflare, Akamai, or Fastly.
Configure caching for static assets.

Optimize DNS and routing through CDN.

Tune cache behaviors to reduce origin load.

7.7 Edge Caching and Cache-Control Headers
Knows how to push caching closer to users with edge rules and headers.


https://learn.wpvip.com/certification/

e Configure cache-control headers (nax-age, stale-while-revalidate).
e Enable HTML caching at the CDN edge.
e Apply edge rules for performance-critical paths.

7.8 Offloaded Search Services
Knows how to implement scalable search using external engines.

Integrate Elasticsearch or OpenSearch.
Index WordPress content efficiently.

Build faceted or full-text search interfaces.
Offload heavy search queries from MySQL.

7.9 Decoupling Features to Reduce Load
Knows how to offload background and resource-intensive tasks from the web tier.

e Move analytics, search, or reporting into separate services.
e Implement background processing with queues.
e Use microservices for non-critical workloads.

7.10 Infrastructure Monitoring and Autoscaling
Knows how to monitor and scale WordPress hosting environments dynamically.

Use tools like New Relic or Datadog for infrastructure metrics.
Define thresholds for CPU, memory, and response time.
Configure auto-scaling groups or container clusters.

Plan for traffic spikes and failover.

Section 8: Disaster Recovery (~10% of the exam)

8.1 Safe Database Restores
Knows how to restore full or partial WordPress databases without causing data loss or integrity
issues.

Restore databases with WP-CLI, phpMyAdmin, or SQL commands.
Ensure schema compatibility during restores.

Avoid overwriting current data unintentionally.

Validate data integrity post-restore.


https://learn.wpvip.com/certification/

8.2 Restoring the Codebase
Knows how to roll back the WordPress codebase to a safe, stable version.

Restore code from backups or Git.

Ensure file integrity and dependency consistency.
Match codebase with database schema.
Validate environment stability after rollback.

8.3 Identifying and Cleaning Corrupted Data
Knows how to detect and repair corrupted or compromised database entries.

Find malformed content or orphaned metadata.
Diagnose inconsistent taxonomy relationships.
Clean corrupted data without further disruption.
Document and validate cleanup actions.

8.4 Writing Scripts for Recovery and Remediation
Knows how to script database fixes and migrations during recovery.

Write scripts to patch or transform data.

Handle serialized data safely.

Repair user accounts and relationships.

Restore missing content from logs or external sources.


https://learn.wpvip.com/certification/

	Enterprise WordPress Developer Certification Exam Guide 
	Section 1: WordPress Core (~15% of the exam) 
	Section 2: Custom Development (~15% of the exam) 
	Section 3: Security (~15% of the exam) 
	Section 4: Performance (~20% of the exam) 
	Section 5: Change Management (~10% of the exam) 
	Section 6: Debugging (~10% of the exam) 
	Section 7: Scalability & Architecture (~10% of the exam) 
	Section 8: Disaster Recovery (~10% of the exam) 


